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Abstract—Robot-assisted treadmill training is an established 
intervention used to improve walking ability in patients with 
neurological disorders. Although it has been shown that atten-
tion to the task is a key factor for successful rehabilitation, the 
psychological state of patients during robot-assisted gait ther-
apy is often neglected. We presented 17 nondisabled subjects 
and 10 patients with neurological disorders a virtual-reality 
task with varying difficulty levels to induce feelings of being 
bored, excited, and overstressed. We developed an approach to 
automatically estimate and classify a patient’s psychological 
state, i.e., his or her mental engagement, in real time during 
gait training. We used psychophysiological measurements to 
obtain an objective measure of the current psychological state. 
Automatic classification was performed by a neural network. 
We found that heart rate, skin conductance responses, and skin 
temperature can be used as markers for psychological states in 
the presence of physical effort induced by walking. The classi-
fier achieved a classification error of 1.4% for nondisabled 
subjects and 2.1% for patients with neurological disorders. 
Using our new method, we processed the psychological state 
data in real time. Our method is a first step toward real-time 
auto-adaptive gait training with potential to improve rehabilita-
tion results by optimally challenging patients at all times dur-
ing exercise.

Key words: automatic classification, gait robot, Lokomat, men-
tal engagement, physiological measurements, psychophysiol-
ogy, rehabilitation, spinal cord injury, stroke, virtual reality.

INTRODUCTION

Treadmill training is an established treatment for gait 
rehabilitation in patients with neurological disorders, such 
as stroke, spinal cord injury (SCI), or traumatic brain 
injury [1–2]. To increase rehabilitation outcome in those 
patients, an increasing number of driven gait orthoses 
(DGOs) are available that automate gait training, such as 
the Lokomat (Hocoma AG; Volketswil, Switzerland), the 
Autoambulator (HealthSouth; Birmingham, Alabama), the 
LOPES (Lower-extremity Powered Exoskeleton, Labora-
tory Biomechanical Engineering, University of Twente; 

Abbreviations: ANS = autonomic nervous system, CI = confi-
dence interval, CNS = central nervous system, DGO = driven 
gait orthosis, ECG = electrocardiogram, EMG = electromyo-
gram, GSR = galvanic skin response, HR = heart rate, HRV = 
heart rate variability, PC = principal component, PCA = princi-
pal component analysis, RMSE = root-mean-square error, 
RMSSD = root-mean-square successive difference, SAM = 
Self-Assessment Manikin, SCI = spinal cord injury, SCL = skin 
conductance level, SCR = skin conductance response, SD = 
standard deviation, T = thoracic, VR = virtual reality.
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Enschede, the Netherlands), and the Gait Trainer (devel-
oped by Hesse et al. [4]) [3–7].

Active biomechanical engagement of patients in 
rehabilitation training has shown to be an important fac-
tor in successful rehabilitation results [8]. The patient’s 
biomechanical effort can be quantified by torque and 
force sensors. This information is used to assess the 
patient’s level of activity [9].

While many studies investigated biomechanical 
engagement, active mental engagement, which has also 
been shown to be a key factor in successful rehabilitation 
[10], cannot be assessed easily and has been previously 
neglected. The goal of our work is to determine if a 
patient is mentally engaged during the training in order to 
maximize motor learning during rehabilitation. From 
motor learning theory, it is known that the learning rate is 
maximal at a task difficulty level that positively chal-
lenges and excites subjects while not being too stressful 
or boring [11]. A task that is too easy for the subject will 
be perceived as boring and a task that is too difficult will 
overstress the subject, while an optimally challenging 
task should induce maximal mental engagement and opti-
mal physical participation.

We developed an approach using psychophysiologi-
cal signals to automatically estimate and classify a 
patient’s psychological state, i.e., his or her mental 
engagement, during rehabilitation. We used measure-
ments of heart rate (HR), breathing frequency, galvanic 
skin response (GSR), and skin temperature. To our best 
knowledge, estimation of psychophysiological states has 
never been performed, either during walking or in 
patients with neurological disorders. Using our new 
method, we process the psychological state data in real 
time. We introduce our method as a first step toward real-
time, auto-adaptive gait training with management of sub-
ject engagement and potential to improve rehabilitation 
results by optimally challenging the subject at all times 
during exercise.

BACKGROUND

Active mental engagement has been shown to be a 
key factor for successful rehabilitation [10]. In our experi-
ment, we have defined three different levels of mental 
engagement according to the circumplex model of affect 
[12] (Figure 1), in which emotions are defined by two 
dimensions: valence (ranging from unpleasant to pleasant) 

and arousal (ranging from deactivation to activation). We 
used virtual-reality (VR) environments during robot-
assisted gait training to induce different levels of mental 
engagement in subjects. Challenging tasks in VR environ-
ments were shown to have a positive, motivating effect 
during rehabilitation [13]. In this context, boring, too 
stressful, or optimally challenging tasks can be the result 
of a VR task that is too easy, too difficult, or appropriate 
for the patient’s abilities, respectively. A VR task that is 
too easy or underchallenging for the patient will be per-
ceived as boring and a task that is too difficult will over-
stress the patient, while an optimally challenging task 
should excite and motivate the patient and cause maximal 
mental engagement and optimal physical participation.

In the present state of the art, mental engagement of 
patients is quantified by questionnaires—motivation, for 
example, can be quantified by the Intrinsic Motivation 
Inventory [14]. During gait rehabilitation, questionnaires 
are not appropriate for continuous, objective assessment 
of the psychological state of the patient. In addition, 
patients with neurological disorders with severe cogni-
tive deficits or aphasia might not be able to understand 
and respond appropriately to the questions.

Therefore, we used physiological measurements as a 
proxy to assess and determine mental engagement of 

Figure 1.
Three conditions were defined according to the circumplex model of 
affect. Solid circle represents underchallenged condition, dotted circle 
represents challenged condition, and dashed circle represents over-
challenged condition. Adapted from Russell JA. A circumplex model 
of affect. J Pers Soc Psychol. 1980;39(6):1161–78.
DOI:10.1037/h0077714
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patients, because it has been shown that each behavioral, 
cognitive, emotional, and social interaction may be 
reflected in physiological processes [15–16]. The physi-
ological recordings reflect reactions that result from activ-
ities of the central nervous system (CNS) and the 
autonomic nervous system (ANS). Examples for meas-
ures of the CNS are the electroencephalogram or near 
infrared spectroscopy; examples for measurements of the 
ANS are electrocardiogram (ECG), GSR, breathing fre-
quency, or skin temperature. We focused on measuring the 
ANS because real-time measurement and analysis of sig-
nals from the CNS during walking in a robotic device are 
generally not feasible due to noise and motion artifacts.

Signals from the ANS that could indicate mental 
engagement are primarily signals that respond to mental 
stress or relaxation [15]. In addition to psychological pro-
cesses, physical effort such as walking on a treadmill can 
influence the psychophysiological measurements. From 
the ECG , HR and HR variability (HRV) can be com-
puted. When recorded during a VR task with a goal, HR 
was shown to be an indicator of physical as well as men-
tal load [17]. Physiological effort and psychological 
stress have an influence on the short-term variation of 
HR. HRV was shown to decrease during physical effort 
[18] and mental stress [19]. GSR is used as a direct meas-
ure for arousal [20]. From the GSR, skin conductance 
responses (SCRs) measured as a number and the skin 
conductance level (SCL) are computed. The SCR is a 
sensitive indicator for emotional strain [21]. In recent 
research, SCL was found to increase during demanding 
tasks compared with a rest period [22]. The breathing fre-
quency was found to increase during stress [23], mental 
effort [24], and physical activity [25]. Skin temperature 
decreased during mental work stress in a study by 
Ohsuga et al. [26] but increased with physical activity 
[27]. Other physiological recordings from the peripheral 
nervous system have been used as indicators of the psy-
chophysiological state of a subject. Among these were 
facial electromyogram (EMG) recordings as indicators 
for emotional responses to pleasant or unpleasant stimuli 
[28–29].

We hypothesize that in our experiments, we should 
therefore expect an increase in HR and a decrease in 
HRV with increasing difficulty level of a task. In addi-
tion, an increase in SCR is expected to occur as a conse-
quence of an increase in difficulty level of a VR task. An 
increase is also expected in SCL and breathing frequency 
for the task conditions compared with baseline. A 
decrease in skin temperature as a consequence of a 

decrease in the difficulty level could therefore be 
expected if the physical activity remained constant.

METHODS

We conducted this study at two locations. We con-
ducted measurements with nondisabled subjects at the 
Spinal Cord Injury Center Balgrist, Zurich, Switzerland. 
We conducted measurements with patients who had 
experienced a stroke at the Neurologische Klinik Bad 
Aibling, Bad Aibling, Germany. We presented all sub-
jects with a VR task that was used to induce three dif-
ferent levels of mental engagement. The mental 
engagement was subjectively quantified by subjects via 
questionnaires. To objectively quantify the effects of dif-
ferent levels of mental engagement, we recorded ECG , 
breathing, GSR, and skin temperature. Our goal was to 
determine the potential to identify the current state of 
mental engagement directly from the physiological sig-
nals by using descriptive statistics.

Attaching sensors for physiological recordings on the 
subject’s body was time and labor intensive, requiring 
attention of the therapist and reducing the time a patient 
could exercise in the Lokomat. To improve clinical appli-
cability of our approach, we investigated which physi-
ological signals contained most of the information and 
which sensors might not be necessary for future applica-
tions. Principal component analysis (PCA) allowed iden-
tification of the signals that explained most of the 
variance in the data.

We then trained a neural network to investigate the 
possibility of identifying the current state of mental 
engagement directly from physiology. This was done 
with all physiological signals and with a reduced data set 
of signals, which were shown to be dominant in the PCA.

Participants
Seventeen nondisabled subjects (eight male and 

nine female, aged 24.1 ± 2.0 years [mean ± standard 
deviation (SD) unless otherwise specified]) and ten 
patients with neurological disorders (seven male and 
three female, aged 52.4 ± 18.9 years) participated in the 
study. All 10 patients who neurological gait impairment 
due to their pathology. Table 1 summarizes characteris-
tics of the 10 patients who participated in the study. A 
clinical expert selected and approved all patients for par-
ticipation in the study to ensure that they were able to fol-
low the instructions and respond accordingly.
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Training Environment and Virtual-Reality Task
We used the DGO Lokomat for the locomotion train-

ing. The DGO is an exoskeleton with drives on hip and 
knee joints. The device allows assisted locomotion on a 
treadmill by guiding the subjects’ legs along a predefined 
trajectory. We fixed subjects into the DGO with a harness 
around the hip and cuffs around the legs. The subjects’ feet 
were passively lifted by elastic foot straps to prevent foot 
drop. Subjects were connected to a body-weight support 
system. During walking, we kept the speed constant at 
2 km/h. Cadence had to be slightly adjusted to the individ-
ual leg length of each subject. Subjects walked with the 
assistance of 30 percent body-weight support. At Balgrist 
University Hospital, we projected the VR environment 
onto a 3 × 2 m back-projection screen, which was mounted 
in front of the DGO with a Dolby 5.1 sound system (Dolby 
Laboratories; San Francisco, California) for auditory feed-
back. At the Neurologische Klinik Bad Aibling, we used a 
42-inch flat screen television with stereo sound.

We provided subjects with a VR task that included 
two distinct actions at the same time, a biomechanical task 
and a cognitive task (Figure 2). Subjects had to change 
walking direction in the VR environment to collect items 
by walking into them (biomechanical task). To change the 
walking direction, subjects had to perform an active push 
off in the terminal stance phase. To turn left, the subjects 
had to increase activity in the right leg during stance [30]. 
Because the required physical effort to change walking 
direction was set individually, the challenge was to navi-
gate through the VR environment and collect items. In 

addition, subjects had to jump over barrels that rolled 
toward them by clicking a computer mouse button (cogni-
tive task). Collected items added points to a counter, 
missed items and non-jumped barrels subtracted points.

To create different task difficulty levels, the distance 
between items was adjustable. Furthermore, the distance 
between the barrels and their speed was adjustable 
(Figure 2). Because physical effort influenced the 
psychophysiological recordings, we chose the VR task as a 
combination of coordination (change walking direction) 
and cognition (jump over the barrels). This allowed for 

Table 1.
Characteristics of patients with neurological disorders.

Patient Sex
Age
(yr)

Time Since Incident
(mo)

Lesion FAC WISCI II
Beta

Blocker
1 M 68 2.5 Right middle cerebral artery stroke 4 NA Yes
2 M 62 3.0 Right middle cerebral artery stroke 1 NA No
3 M 51 6.5 Right middle cerebral artery and posterior cerebral 

artery stroke
3 NA Yes

4 M 64 1.0 SCI ASIA A (S1) NA 13 No
5 F 19 21.0 SCI ASIA C (L1) NA 20 No
6 M 75 2.5 Myelopathy (C3–C6) NA 13 No
7 F 57 1.5 Guillain-Barré syndrome 0 NA No
8 M 37 4.5 Hypoxic encephalopathy 1 NA Yes
9 M 26 38.0 Subarachnoid hemorrhage Hunt and Hess grade 4–5 0 NA No

10 F 65 3.0 Right basal ganglia hemorrhage with intraventricular 
extension

0 NA No

ASIA = American Spinal Injury Association, C = cervical, F = female, FAC = functional ambulation category, L = lumbar, M = male, NA = not available, S = sac-
ral, SCI = spinal cord injury, WISCI = Walking Index for Spinal Cord Injury.

Figure 2.
Virtual task with x-axis representing distance between middle line 
and items and y-axis representing distance between items or barrels. 
Axes are adjustable to create different difficulty levels.
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creating subject-specific variation in task difficulty levels 
while keeping the physical effort necessary for successful 
task completion as low as possible.

We set task difficulty individually for each nondis-
abled subject and patient with neurological disorders dur-
ing an initial practice time (Figure 3) by adjusting the 
task difficulty (5 min). In the underchallenged condition, 
we placed the items such that subjects could collect 
100 percent of them without major changes in walking 
direction. We defined the challenged condition by setting 
the distance between items and their distribution over the 
whole scenario in such a way that subjects could collect 
80 to 90 percent of the objects. In the overchallenged 
condition, we distributed the objects in such a way that 
subjects achieved less than 10 percent of the possible 
maximum.

Inducing Different Levels of Mental Engagement
We hypothesized that three different levels of mental 

engagement could be introduced during exercise by pro-
viding subjects with different levels of task difficulty. The 
target mental engagement levels were (1) a feeling of bore-
dom, (2) a feeling of being motivated and excited, and (3) a 

feeling of being overstressed (Figure 4). We expected sub-
jects to be bored when the VR task was easy (underchal-
lenged condition) and when no particular biomechanical or 
cognitive effort was necessary to successfully complete the 
task. When setting task difficulty such that the task was dif-
ficult but feasible (challenged condition), we expected sub-
jects to be motivated and excited. When setting the task 
difficulty to be too difficult (overchallenged condition), we 
expected them to be overstressed (Figure 1). In the 
arousal-valence space (Figure 1), the underchallenged 
condition would have a low level of arousal and a low level 
of valence, the challenged condition would have a high 
level of arousal and valence, and the overchallenged condi-
tion would have a high level of arousal and a low level of 
valence.

We used the Self-Assessment Manikin (SAM) ques-
tionnaire to verify the hypothesis that the three conditions 
in the VR task really resulted in feelings of boredom, 
excitement, and stress (Figure 4). The SAM is used to 
measure emotional response to different stimuli, in partic-
ular the emotional responses arousal and valence [31]. 
The arousal dimension ranged from “relaxed and sleepy” 
to “excited and extremely aroused.” The valence dimen-
sion ranged from “unhappy” to “very happy” [32]. We 
asked subjects to respond to a 5-point scale by selecting 

Figure 3.
Experimental protocol. SAM = Self-Assessment Manikin.

Figure 4.
Inducing different states of mental engagement during gait training 
using task level difficulty of virtual-reality task. Subjectively, ques-
tionnaires are used to establish connection between task difficulty and 
mental engagement. Objectively, psychophysiological measurements 
are used. *Russell JA. A circumplex model of affect. J Pers Soc Psy-
chol. 1980;39(6):1161–78. DOI:10.1037/h0077714
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the figure that best represented their current emotion. The 
value of 1 represented the lowest valence (unhappy) and 
arousal (sleepy) and 5 represented the highest valence 
(very happy) and arousal (excited). After each task condi-
tion, we asked the subject to respond to the SAM. Further-
more, we asked the subjects to rate their physical effort on 
a scale from 1 to 5, where 1 = not physically exhausting 
and 5 = extremely physical exhausting. This nonverbal, 
pictorial questionnaire was chosen so subjects did not dis-
turb the breathing frequency analysis by speaking and to 
reduce the complexity of responding to the questionnaire 
for patients with aphasic stroke or cognitive impairments. 
We tested all dimensions of the SAM using the Friedman 
test. We performed a Wilcoxon test in combination with 
Bonferroni correction for a paired comparison. We set the 
significance level at p < 0.05.

Estimating Mental Engagement from Physiological 
Recordings

Physiological Recordings
In addition to the subjective questionnaires, we objec-

tively quantified the effects of different levels of mental 
engagement through recordings of ECG , breathing, GSR, 
and skin temperature. We measured the ECG with three 
surface electrodes. One electrode was affixed 2 cm below 
the right clavicula between the first and second ribs, one 
was affixed at the fifth intercostal space on the midaxil-
lary line on the left side of the body, and a ground elec-
trode was affixed to the right acromion. We computed HR 
from ECG using a real-time R-wave detection algorithm 
(adapted from Christov [33]); we computed HRV as a dis-
crete time-series of consecutive R waves, the so-called 
“RR intervals.” We computed the square root of the mean 
squared differences of successive normal-to-normal inter-
vals (RMSSD) from RR intervals for analysis of HRV in 
the time domain. According to the recommendations of 
Malik [34], we performed the frequency analysis of HRV 
using the quotient of low-frequency components over 
high-frequency components. The respective frequency 
bands can be found in “Heart rate variability. Standards of 
measurement, physiological interpretation, and clinical 
use” [34]. Using a thermistor flow sensor placed under-
neath the nose, we recorded breathing and computed 
breathing frequency using a peak detection algorithm. We 
measured changes in GSR using two electrodes attached 
to the proximal phalanx of the second and fourth fingers 
on the left hand or the unaffected hand in patients with 

neurological disorders. We detected one SCR from the 
skin conductance signal, when signal amplitude changed 
by at least 0.05 Siemens in less than 5 seconds [22]. SCL 
was high-pass filtered with a 20 Hz Butterworth filter to 
remove sensory noise. We measured skin temperature on 
the distal phalanx of the fifth finger of the left hand or the 
unaffected hand in patients with neurological disorders 
and did not process it further. We decided to exclude 
facial EMG , since some patients with neurological disor-
ders did not tolerate additional sensors attached to their 
faces while other patients with neurological disorders had 
half-sided paralysis of their facial muscles. We amplified 
the signals with the g.USBamp (Guger Technologies; 
Graz, Austria). We sampled signals at 512 Hz according 
to the recommendations of Malik [34]. All signal process-
ing software was written in MATLAB (The MathWorks; 
Natick, Massachusetts).

Evaluation of Physiological Recordings
Using descriptive statistics, we investigated which 

physiological signals changed significantly between the 
different task-level conditions. We only analyzed the last 
minute of each 5-minute condition to ensure that steady 
state had been reached. We tested all conditions using the 
Friedman test followed by a Wilcoxon test for paired 
comparison. Bonferroni correction corrected multiple 
errors caused by the paired comparison. We set the sig-
nificance level at p < 0.05.

The attachment of sensors for physiological record-
ings on the body was time consuming for a clinical appli-
cation, demanding resources of the therapist and also 
reducing exercise time with the Lokomat. To improve 
clinical applicability of our approach, we were interested 
in understanding whether all recorded physiological sig-
nals were necessary to perform classification of mental 
engagement or whether the recorded data contained 
information from dependent variables. It could, for 
example, be possible that HR and breathing frequency 
would show a strong correlation. In this case, one of 
these signals could then be omitted in future recordings 
without degrading classification performance.

Therefore, we investigated which signals contained 
the most information in terms of variance explained and 
could be seen as major markers for changes in psycho-
logical states. We performed a PCA for each nondisabled 
subject and each patient with neurological disorders 
individually. In this analysis, we combined 5 minutes of 
data for each of the four conditions of each subject before 
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the PCA was performed. Inputs to the PCA were HR, a 
discrete time series of HRV, a discrete time series of the 
number of SCR events, SCL, skin temperature, and a dis-
crete time series of breathing frequency. PCA is a linear, 
orthogonal rotation, which projects the original data into 
a new coordinate system. In this new coordinate system, 
the first axis (or first principal component [PC]) explains 
most of the variance. The second PC explains the second 
most important variance, etc. The PCA is computed as

where D = the original data, n = number of data points, 
m = number of physiological recordings, F = the loading 
factors, and A = the activation coefficients. In our case, 
the original data consisted of a time series with n data 
points and m = 6 physical recordings (dimensions). The 
activation coefficients were a time series with six dimen-
sions. The matrix of loading factors was the rotation 
matrix and defined the new coordinate system.

We computed how many factors (k) were necessary 
to explain more than 80 percent of the variance in all sub-
jects (k[1,n]), where n = the dimensionality of original 
data (i.e., 6). We performed a factor rotation on these first 
k PCs to obtain a clearer picture, where input signals pro-
vided the largest variance. Factor rotation is a mathemati-
cal transformation that does not alter the subspace 
spanned by the PCs, but shifts the weight of an input, 
e.g., from the first PC to the second, while maintaining 
the orthogonality between the components.

Neural Network for Automatic Classification of Mental 
Engagement

For automatic classification of mental engagement 
from physiological recordings, we evaluated the effec-
tiveness of a neural network. As a classifier, we trained a 
data-fitting neural network (Neural Network Fitting Tool 
[MATLAB]) containing 30 hidden-layer neurons. The 
neural network provided an estimation of the current 
state of mental engagement, based on the physiological 
recordings. Of the data, we took 20 percent as training 
data, 20 percent as validation, and 60 percent as testing 
data. As neural networks require labeled data during the 
training phase, we labeled the training data as 1 = base-
line, 2 = underchallenged, 3 = challenged, or 4 = over-
challenged. Learning was performed with the Levenberg-
Marquardt back-propagation algorithm [35]. We selected 
the data necessary for training of the network such that an 

identification phase would not take longer than 20 per-
cent of the whole training time in the DGO; we targeted 
reducing complexity of the methods in order to simplify 
and benefit the clinical process.

We assessed whether all six physiological signals 
(HR, HRV, SCL, SCR, breathing frequency, and skin 
temperature) were needed for classification of mental 
engagement and investigated which sensors might be 
omitted without significantly decreasing the classifier 
performance. The goal of this exercise was to improve 
clinical applicability of our approach by optimizing the 
number of signals required during clinical sessions; 
attaching the sensors to the patient’s body was time con-
suming, requiring a lot of attention and effort from the 
therapist, reducing the time left for Lokomat training. 
Also, sensors such as facial electrodes were impractical 
for the patient population and the breathing sensors were 
perceived to be disturbing by the patients; patient com-
fort during the training could be increased without the 
breathing sensor and the total number of sensors needed 
could be minimized.

We compared the performance of the classifier by 
means of the mean squared classification error for two 
sets of input data. The neural network classified the men-
tal engagement from all (n = 6) raw physiological data 
streams. We then performed classification of the current 
psychological state with a reduced data set that contained 
only the physiological recordings that were dominant in 
the first k PCs (k < n). We selected the number k of PCs 
by means of variance explained and targeted a value 
>80 percent.

Experimental Protocol
We subdivided each measurement into a practice time 

with the VR environment, a baseline recording without 
the VR environment, and the three task conditions 
(underchallenged, challenged, and overchallenged) (Fig-
ure 3). Although we designed the task such that it was 
possible for the subject to manage with little physical 
effort, it still involved a nonnegligible physical effort. 
Because patients with neurological disorders, a heteroge-
neous population, are already likely to exhibit large inter-
subject variability due to impairments of cognitive and 
motor ability (as well as the potential effects of medica-
tions), we decided in the experiment planning phase to 
avoid task-order randomization to keep the influence of 
physical effort comparable. Therefore, we decided to 
present the conditions in the just mentioned order. We 
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started with the bored condition, which required the least 
control effort to succeed, and finished with the overchal-
lenged condition, which required the most effort to 
accomplish the task.
The sequence of one measurement was—

  • Practice time: subjects became acquainted with the 
effects of their movements on the system (controlling 
the system). The walking speed for the baseline and 
the balance of the measurement interval was main-
tained at 2 km/h. The task difficulty levels were set 
individually for each subject.

  • Five-minute walking baseline: physiological signals 
were recorded in the Lokomat with 30 percent body-
weight support and without the VR tasks.

  • Three task conditions in the VR environment: the 
three task conditions were arranged in increasing lev-
els of difficulty, each with a duration of 5 minutes. 
Five minutes was determined as a trade-off between 
the time required to reach a steady state in the physi-
ological signals and to keep the exercise portion of the 
experiment time below 45 minutes for patients with 
neurological disorders, since it has been informally 
reported by physiotherapists to be the maximum time 
for patients to exercise in the Lokomat.

After the walking baseline and after each scenario, 
we requested that the subjects respond to the SAM. Dur-
ing the questionnaire response time, we turned off the VR 
environment.

RESULTS

Questionnaires

Nondisabled Subjects
According to the SAM, we were able to elicit the 

desired psychological state (bored, excited, overstressed) 
in the majority of nondisabled subjects. Arousal in the 
four conditions (baseline, underchallenged, challenged, 
and overchallenged) was significantly different among 
each of the conditions and increased monotonously with 
task levels. We found similar results for perceived physi-
cal effort. The valence dimension demonstrated signifi-
cant differences only in the overchallenged condition 
when compared with all other conditions. The values 
from the overchallenged condition were significantly 
lower than all other conditions (Table 2).

Patients with Neurological Disorders
We found no significant changes between the dif-

ferent conditions in the SAM, either for arousal, valence, 
or physical effort.

Statistical Analysis of Recorded Physiological Signals

Nondisabled Subjects
In nondisabled subjects, we found statistically 

significant differences in several physiological signals. 
Table 3 summarizes all results.

HR increased significantly from baseline for all con-
ditions with the VR task and for the challenged and over-
challenged conditions compared with the underchallenged 
condition. We found the same significant changes for 
breathing frequency.

We also found similar results for the number of SCR. 
For all VR task conditions, the number of SCR increased 
significantly compared with baseline. In addition, the 
number of SCR increased significantly for the overchal-
lenged condition compared with the underchallenged 
condition.

In the time domain of HRV, RMSSD decreased sig-
nificantly from baseline for the challenged and overchal-
lenged conditions. Furthermore, we found a significant 
decrease for the overchallenged condition compared with 
the underchallenged condition. We found no significant 
changes in the frequency domain.

We also found a significant decrease in skin tempera-
ture. The skin temperatures during the underchallenged and 
challenged conditions were significantly decreased when 
compared with the baseline and overchallenged condition.

Patients with Neurological Disorders
Compared with the very robust and variable physi-

ological signals in nondisabled subjects, we found only 

Table 2.
Results of nondisabled subjects for Self-Assessment Manikin (SAM) 
questionnaire.

Condition Arousal Valence Physical Effort
Baseline 1* (1–2) 4 (4–4) 1* (1–1)
Underchallenged 2* (2–2) 4 (4–4) 2* (1–2)
Challenged 4* (3–4) 4 (3–4) 3* (3–3)
Overchallenged 4* (4–4) 3* (2–4) 3* (3–4)
Note: Median (95% CI) of the SAM dimensions (arousal, valence, and physi-
cal effort).
*Significantly different from other conditions (baseline, underchallenged, 
challenged, overchallenged) in this dimension (p < 0.05).
CI = confidence interval.
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three significant changes in patients with neurological 
disorders. HR increased significantly for the challenged 
condition (7.6%) and for the overchallenged condition 
(6.2%) compared with baseline (median 89.7 beats per 
minute, confidence interval [CI]: 77.5–103.2). Breathing 
frequency decreased significantly for the overchallenged 
condition (5.0%) compared to the challenged condition 
(median 27.7 cycles per minute, CI: 24.8–29.8).

Principal Component Analysis of Recorded
Physiological Signals

The first two PCs explained more than 70 percent of 
the variance in all subjects, nondisabled as well as patients 
with neurological disorders; the first three PCs explained 
more than 80 percent in all but one nondisabled subject 
and all patients with neurological disorders (Figure 5).

By PCA, we were able to directly separate the four 
conditions (baseline, underchallenged, challenged, and 
overchallenged) and visually display the results in a sim-
ple and easy-to-understand manner, whereas the results of 
the statistical analysis of the physiological data were 
unclear. Simplifying the display of important data reflect-
ing the response of the patient to the exercise condition 
and the level of mental engagement will improve ease of 
use in the clinical setting and allow personalization of the 
exercise experience for the patient. A typical example is 
shown in Figure 6 for a nondisabled subject and in Fig-
ure 7 for a patient with neurological disorders. Loading 
factor 1 of this particular plot relies mainly on skin tem-
perature, while loading factor 2 is a combination of HR 
and SCL (Tables 4 and 5). Each mental engagement con-
dition may be visually distinguished from the other (as 
depicted by ellipsoidal boundaries in Figures 6 and 7), 

providing objective information to the therapist relevant 
for patient therapy. The temporal evolution of the PC acti-
vation coefficients is displayed by changes in color. The 
lighter the color of each condition, the earlier in the condi-
tion we recorded the data. The black arrows mark the gen-
eral evolution of the activation coefficients over the time 
course of one condition. Although we performed classifi-
cation on three PCs, we only plotted two dimensions, as a 
three-dimensional plot would be difficult to display.

Evaluation of the loading factors (i.e., the rotation 
matrix obtained from the PCA) of all nondisabled sub-
jects and all patients with neurological disorders revealed 
that PC1 was dominated by skin temperature and SCL in 
both groups (Figure 8). HRV played a minor role in the 
first three PCs for both groups. While breathing fre-
quency was not dominant in nondisabled subjects, data 
variability of patients with neurological disorders showed 
a major dependency of breathing frequency in PC3.

Online Classification of Task Level Difficulty
Although we only found two significant differences 

in all physiological recordings over all conditions of 
patient data, the classification of the different psycholog-
ical states using a neural network was possible for non-
disabled subjects and also for patients with neurological 
disorders. As described in the “Methods” section, we 
evaluated the classification results on a neural network 
for two different sets of input data: on one side with six 
physiological parameters extracted and on the other side 
using only the physiological signals dominant in the first 
three PCs. Mean classification error was 1.4 percent for 
the full and 2.5 percent for the reduced data set in nondis-
abled subjects and 2.1 percent for the full and 4.7 percent 

Table 3.
Statistical results of physiological recordings in nondisabled subjects.
Physiological Recording Baseline Underchallenged Challenged Overchallenged
Heart Rate (bpm) 73.3*†‡ (60.3–81.8) 81.3†‡§ (68.0–91.2) 94.1*§ (77.8–103.0) 96.4*§ (76.3–102.9)
Breathing Frequency (cpm) 21.6*†‡ (20.3–24.5) 23.0†‡§ (22.2–26.1) 27.5*§ (24.9–30.3) 27.8*§ (25.0–29.4)
Skin Conductance Response 
(No. of SCR/min)

0.2*†‡ (0.0–0.6) 1.0‡§ (0.2–3.7) 3.1§ (0.6–5.3) 3.3*§ (0.4–6.2)

RMSSD (ms) 30.0†‡ (19.4–49.9) 27.5‡ (6.8–37.3) 25.5§ (5.0–60.2) 15.3*§ (4.7–63.0)
Skin Temperature (°C) 32.5*† (31.7–32.9) 30.8‡§ (29.1–32.1) 31.5‡§ (30.5–32.5) 32.0*† (31.3–32.7)
Note: Median (95% CI) of heart rate, breathing frequency, SCR, RMSSD, and skin temperature.
*Significantly different from underchallenged condition (p < 0.05).
†Significantly different from challenged condition (p < 0.05).
‡Significantly different from overchallenged condition (p < 0.05).
§Significantly different from baseline (p < 0.05).
bpm = beats per minute, CI = confidence interval, cpm = cycles per minute, RMSSD = square root of mean squared differences of successive normal-to-normal 
intervals, SCR = skin conductance response.
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for the reduced data set for patients with neurological dis-
orders (Figure 9).

In 10 of 17 nondisabled subjects, the baseline and 
three different task conditions could be visually classified 
by plotting the first two PCs (Figure 6). In these subjects, 
automatic classification by a neural network was possible 
with a very low level of classification error measured by 
the root-mean-square error (RMSE). In 5 of 17 nondis-
abled subjects, a graphical separation (as in Figure 6) 
was not possible, while the neural network still per-
formed with less than 3 percent RMSE. Classification of 
the remaining 2 of 17 nondisabled subjects was possible 
with 5 and 13 percent RMSE, respectively (Figure 9).

In 8 of 10 patients with neurological disorders, classi-
fication was possible with less than 5 percent error when 
using the full set of all physiological signals. Similar to 
the results from nondisabled subjects, visual separation 
was possible in these patients from a plot of the first two 
PCs (Figure 7). Figure 9 displays the classification 
results for the different sets of inputs. In patients with neu-
rological disorders, the classification was successful, but 

to a lesser extent. Particularly in patient 10, the classifica-
tion error was 18 percent for a reduced set of input data. 
Using all recorded physiological data, an overall classifi-
cation error of less than 7 percent was possible for all 
patients. Training of the neural network was possible in 
<1 minute on a standard Pentium processor (1.4 GHz, 
2 GB RAM [Intel; Santa Clara, California]).

DISCUSSION

We performed VR-enhanced robot-assisted treadmill 
training in nondisabled subjects and patients with neurolog-
ical disorders, and we were able to demonstrate that psy-
chophysiological measurements alone were sufficient to 
detect current psychological state. We parametrically 
manipulated the difficulty of a VR task during the rehabili-
tation training; we established three levels of difficulty 
comprised of underchallenging, challenging, and overchal-
lenging to solicit experiences of boredom, excitement, or 
stress. We recorded ECG  , breathing frequency, skin 

Figure 5.
Variance explained by principal components (PCs) for (a) nondisabled subjects (n = 17) and (b) patients with neurological disorders (n = 10). As 
PC analysis (PCA) performs without loss of information, correlation between original signal and PCA decomposed signal must be 100 percent if 
all components are combined.
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temperature, and the GSR. The psychological state of a 
subject could be classified using a combination of PCA 
with a neural network. We found that HR, SCL, and skin 
temperature can be used as markers for psychological states 
in the presence of physical effort (corresponding very well 
with the gold standard instrument to measure psychological 
state, the SAM), associated with the exercise typically used 
for patients with neurological injury. We believe that 
patients will benefit from the provision of an objective 
measure to automatically assess psychological state during 
rehabilitation so that measures can be taken to adjust the 
exercise conditions accordingly.

Objective Classification of Mental Engagement
Evaluation of questionnaires from nondisabled sub-

jects confirmed that VR tasks of different difficulty levels 
can indeed result in different levels of mental engagement, 
i.e., of being bored, excited, or overstressed. Also in non-
disabled subjects, descriptive statistics would suffice to 

distinguish between different levels of mental engage-
ment: the automatic classification worked in all but two 
subjects with less than 2 percent classification error.

In patients with neurological disorders, neither ques-
tionnaires nor physiological signals showed a picture as 
clearly as in nondisabled subjects. While therapists anec-
dotally reported that the VR task bored, exciting, or over-
stressed the patients with neurological disorders, the 
questionnaires did not confirm this observation. The 
Lokomat is typically used in gait rehabilitation of 
patients with little to no walking ability. In order to 
ensure that our approach is clinically applicable in the 
future, we explicitly recorded data from severely affected 
patients. A possible explanation of the poor results from 
questionnaires is that patients with cerebral lesions might 
have cognitive deficits, which might prevent them from 
assessing, expressing, and verbalizing their level of men-
tal engagement during rehabilitation. This was consistent 
with reports by the therapists. In addition, patients did not 

Figure 6.
First two activation coefficients of the principal component analysis (PCA) exemplarily shown for one nondisabled subject (subject 17), sepa-
rated for conditions “baseline,” “underchallenged,” “challenged,” and “overchallenged,” plotted for whole length of each condition (5 minutes). 
Within one color, darkness of color symbolizes later time during condition. While PCA was performed at once on whole data set, colors illustrate 
temporal evolution of data over conditions. PC = principal component.
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usually admit if they experienced the task as too difficult, 
perhaps because they were very ambitious and also deter-
mined to successfully solve the task. Although the ques-
tionnaire showed only few changes, every patient with 
neurological disorders achieved the predefined scores 
(success rate of 100% for the underchallenged condition, 
of 80% to 90% for the challenged condition, and of 10% 
to 20% for the overchallenged condition). Another expla-
nation might be the fact that walking with the help of the 
DGO was an experience that is positively perceived by 
patients with neurological disorders who may otherwise 
be unable to walk well on their own.

Despite the heterogeneous and unclear nature of the 
picture in the descriptive statistical analysis of the physi-
ological data of patients with neurological disorders, the 
classification of the various conditions in the VR environ-
ment was possible with less than 8 percent classification 

error in all patients (Figure 9). In this context, a real-time 
automatic classification algorithm applied to physi-
ological recordings seems to allow an objective estima-
tion of mental engagement for the benefit of the patient in 
clinical applications, and in particular, when compared 
with the sometimes conflicting and often unreliable sub-
jective information obtained from other sources.

Influence of Physical Activity, Neurological Deficits, 
and Medication

To our best knowledge, no one has previously per-
formed estimation of psychophysiological states in 
patients with neurological disorders during walking. We 
expected our results to be altered compared with previous 
research because of the influence of physical activity 
caused by walking and changes in autonomous responses 
of the CNS in patients with neurological disorders.

Figure 7.
First two activation coefficients of the principal component analysis (PCA) exemplarily shown for one patient with neurological disorders 
(patient 3), separated for conditions “baseline,” “underchallenged,” “challenged,” and “overchallenged,” plotted for whole length of each condi-
tion (5 minutes). Within one color, darkness of color symbolizes later time during condition. While PCA was performed at once on whole data 
set, colors illustrate temporal evolution of data over conditions. PC = principal component.
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HRV was previously used as a major marker for 
stress [36] and has also been shown to decrease with 
increased physical effort [37], which is the case in tread-
mill walking. Physical effort of walking might have 
occluded psychological influence of stress on HRV, 
which is why HRV might not have changed significantly 
in our subjects. Although we tried to keep the physical 
effort necessary for controlling the VR task as low as 
possible, the statistical evaluation confirmed that HRV 
did not vary significantly.

The lack of statistically significant changes in physi-
ological responses of patients might be explained by the 
effects of the lesion. In patients with stroke, a disturbance 
in the autonomic functions caused by the lesion was often 
described to affect physiological processes in cerebrovas-
cular diseases [38–40]. In the context of a decrease in 
HRV, i.e., SD of RR intervals, we found low frequency 
and high frequency for patients with stroke [38,40]. In 
addition, Korpelainen et al. showed that skin temperature 

Table 4.
Loading factors of first principal components (PCs) of nondisabled 
subject 17.

Physiological Recording PC1 PC2
Heart Rate (bpm) 0.2471 0.6025
Heart Rate Variability (ms) 0.0168 0.0585
Skin Conductance Response (No. of SCR/min) 0.0002 0.0607
Skin Conductance Level (µm) –0.1987 –0.7271
Breathing Frequency (cpm) –0.0093 –0.0668
Skin Temperature (°C) –0.9482 0.3111
Note: Physiological recordings used to extract PCs.
bpm = beats per minute, cpm = cycles per minute.

Figure 8.
Comparison between loading factors of first three principal components (PCs) of (a) nondisabled subjects (n = 17) and (b) patients with neuro-
logical disorders (n = 10). Physiological recordings used to extract PCs are heart rate (HR), heart rate variability (HVR), skin conductance 
response (SCR), skin conductance level (SCL), breathing frequency (BF), and skin temperature (ST).

Table 5.
Loading factors of first principal components (PCs) of patient with 
neurological disorders 3.

Physiological Recording PC1 PC2
Heart Rate (bpm) –0.0221 0.0284
Heart Rate Variability (ms) 0.0465 –0.0602
Skin Conductance Response (No. of SCR/min) –0.3028 –0.8259
Skin Conductance Level (µm) –0.6127 0.0150
Breathing Frequency (cpm) 0.0236 –0.4651
Skin Temperature (°C) 0.7278 –0.3112
Note: Physiological recordings used to extract PCs.
bpm = beats per minute, cpm = cycles per minute.
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is lower on the contralesional side after stroke [41] and 
Naver et al. showed that the sympathetic GSR were 
altered in amplitude and delay [42]. Furthermore, medica-
tion of patients with stroke can influence physiological 
signals, for example beta blockers, which influence the 
cardiovascular response. In patients with SCI with cervi-
cal lesions, ANS control might be disturbed as well, 
because the sympathetic nerve fibers that innervate the 
heart leave the CNS between thoracic (T) 1 and T4, with 
implications for the design of applications of these meas-
ures in real time for such patient populations.

Medication might have altered ANS control in addi-
tion to changes caused by the lesion. Of our 10 patients 
with neurological disorders (Table 1), 3 received beta-
blocking medication at the time of recording, which is 
known to limit HR adaptation to increased physical stress. 
The average classification error (Figure 9) might have 
been lower if we had excluded patients on beta-blocking 
medication. Nevertheless, we decided to include such 
patients, because exclusion would have weakened the 

usability of our system in a clinical setting outside a labo-
ratory environment.

Relevant Physiological Signals for Classification of 
Mental Engagement

We applied a PCA to identify the minimum set of 
physiological signals that would be necessary to perform 
classification of mental engagement while not degrading 
the performance of the classifier. In both nondisabled 
subjects and patients with neurological disorders, skin 
temperature and SCL were the main psychophysiological 
responders to our intervention. Also, HRV did not con-
tribute significantly to the first three PCs. As discussed, 
HRV might have been reduced because of the physical 
effort involved in walking.

Relevant for clinical use are the results in patients 
with neurological disorders: the loading factor of HR 
only occurred with a noticeable magnitude in the third 
PC. Because HRV and HR, which are both computed 
from the ECG , did not significantly contribute to the 
variance of the recorded data in patients, the ECG might 
not be required in future experiments exploring mental 
engagement. Classification results of a data set contain-
ing only the data dominant in the first three PCs con-
firmed that classification performance dropped by 1 
percent. While skin temperature and SCL sensors are eas-
ily attached to the subjects’ unaffected finger, attachment 
of the ECG electrodes requires more time. In clinical 
day-to-day use of the system, reducing the complexity of 
data collection in this manner would shorten the time 
necessary to prepare a patient for therapy.

Real-Time Capability of Approach
Previously, VR environments in rehabilitation did not 

provide patient-specific and adaptive features, with the 
ability to adjust difficulty levels that correlated with mental 
engagement. The long-term goal of our work is to perform 
closed-loop control of psychological states during robot-
assisted rehabilitation—to objectively determine the psy-
chological state of the patient, and then automatically adjust 
or enable the therapist to adjust the attributes of the system 
to stimulate a desired level of mental engagement during 
rehabilitation. The goal of approaching optimal mental 
engagement during exercise in rehabilitation is consistent 
with evidence that attention to task and mental engagement 
improve outcomes of rehabilitation efforts in the training of 
motor skills. Previously, researchers have used closed-loop 
control of psychophysiological measurements to control 

Figure 9.
Classification error by means of root-mean-square error (RMSE) for all 
17 nondisabled subjects (left) and all 10 patients with neurological dis-
orders (right), using all six physiological signals (full data set) and using 
only three signals that were dominant in first three principal components 
(reduced data set). Light gray = full data set, white = reduced data set.
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stress. Rani et al. performed closed-loop control of mental 
stress in sitting nondisabled subjects and used changes in 
HRV and GSR for classification of the stress level [36]. 
Prinzel et al. used the electroencephalogram to moderate an 
operator’s level of task engagement through a closed-loop 
system [43]. Yamamoto and Isshiki used galvanic skin 
reflex to control the awake-level of a subject [44].

During the design phase, we ensured the real-time 
capability of our approach. Processing of physiological sig-
nals was done in real time; we evaluated skin temperature 
using a moving average filter, with an average time of 1 s, 
and processed ECG with an adaptive steep slope beat 
detection algorithm [33] to extract HR and HRV with a 
delay of <100 ms. We transferred an adaptation of an 
offline GSR extraction algorithm from SCR to perform in 
real time with a 15 s delay and detected breathing fre-
quency online using a peak detection algorithm with a <100 
ms delay. The adaptation of the task level difficulty in the 
VR environment could be done in real time as well, such 
that the subject will not observe the changes—to be imple-
mented through adaptation algorithms—as they happen.

The classifier network currently needs an initial 
training phase, after which MATLAB provides a Sim-
ulink model of the network that is real-time capable. The 
length of the identification phase must be determined 
separately, but the temporal changes in the first two PCs 
as shown in Figure 6 indicate that the different levels of 
difficulty resulted in rapid changes in physiological data. 
We expect the identification phase to last only a few min-
utes, which will be reasonable in a clinical setting when 
compared with a normal Lokomat exercise session time 
of 45 minutes. Approaches like reinforcement learning 
could also be implemented to perform classification of 
the psychophysiological state of subjects. Reinforcement 
learning would require a stable physiological response to 
a stimulating input. Vidaurre et al. found a direct correla-
tion between the personally perceived stress level and 
SCL in nondisabled subjects performing a VR task while 
sitting on a chair [45]. In such a case, the SCL could be 
exploited by a reinforcement learning algorithm for clas-
sification and subsequent control of stress.

Usability in Clinical Setting
We recommend minimizing or avoiding the currently 

required identification phase of approximately 10 min-
utes when the system is transferred from laboratory use 
to day-to-day clinical use for real-time assessment of 
psychological states during robot-assisted gait therapy. 

Several strategies may be used. Supervised learning algo-
rithms such as reinforcement learning would require 
labeled data. Labeled data would only be available if the 
state of arousal and valence of the patient is rated during 
the identification phase (either by the patient or by the 
therapist). This means that the system in its current state 
of development can be used only by patients that are cog-
nitively capable of answering the SAM questionnaires

Shortening the identification phase is possible by 
using a simplified questionnaire: for example, asking 
only if the task is “too easy,” “just right,” or “too hard.” 
This would allow labeling the data even for severely cog-
nitively impaired patients. Alternatively, it might suffice 
to only perform identification for each patient once, dur-
ing the first rehabilitation session, and then to use this 
patient-individual classifier for consecutive training days. 
Whether or not the physiological responses recorded on 
consecutive days are stable and repeatable will require 
further investigation.

Alternatively, future implementations could make 
use of adaptive algorithms that can learn in an unsuper-
vised manner. An idea proposed by Vidaurre et al. sug-
gests use of a classifier in combination with a Kalman 
filter to train the classifier at run time [45]. The classifier, 
such as a neural network, could be trained on data from 
previous experiments and a Kalman filter would adapt 
the classifier parameters to the patient. With this tech-
nique, an initialization and patient responses from a ques-
tionnaire would not be necessary, because by using this 
strategy the system would learn while the gait training is 
already in progress.

Extension of Our Approach to Upper Limbs
Our approach is not limited to a particular gait ortho-

sis and is also not limited to rehabilitation of the lower 
limbs. In robot-assisted arm rehabilitation, as performed 
with the ARMin (Eidenössische Technische Hochschule 
Zurich; Zurich, Switzerland) [46–47], the Moog FCS 
HapticMASTER (FCS Robotics; Schipols, the Nether-
lands) [48], or the MIT Manus (Massachusetts Institute of 
Technology; Cambridge, Massachusetts) [49], the lower 
level of physical effort (as compared with walking) might 
even improve the results obtained from nondisabled sub-
jects as well as patients with neurological disorders.

Study Limitations
There are three limitations to our study: lack of task-

order randomization, the heterogeneous group of 
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patients, and differences between the VR setups for 
patients with neurological disorders and nondisabled sub-
jects. First, the order in which the nondisabled control 
and patient groups performed the tasks was not random-
ized. Hence, the results of the physiological recordings 
may have been influenced by the task order. We are 
aware that from a methodological viewpoint, a fully ran-
domized task order would have been preferable but we 
consciously decided to use a nonrandomized order. This 
ensured maintaining a comparable level of physical effort 
among subjects. In addition, patients with neurological 
gait impairments are assumed to already show a large 
intersubject variability because of their motor and cogni-
tive impairments. Although we chose a task in which 
higher task level difficulty could be achieved with little 
increase in physical effort, a task order randomization 
would have certainly further increased the variability in 
performance measures among subjects. Thus we sus-
pected that a further increased variability could have 
made a comparison between subjects impossible and 
might hinder uncovering potentially important results.

Second, the patient group was comprised of patients 
with different neurological gait impairments, some of 
them taking medication such as beta-blocking medicine 
that altered physiological responses. For statistically 
significant physiological data, a homogeneous group of 
patients with stroke who were not taking beta-blocking 
medication would have been preferable. We decided to 
establish mental state classification in a broad variety of 
patient groups reflecting the heterogeneous population of 
realistic clinical patients since we are concerned with 
designing and developing a practical tool for use in a 
clinical setting. Therefore, we included a variety of sub-
jects in terms of lesion (stroke, SCI) and medication 
(beta-blocking medication) to cover the whole range of 
characteristics of patients who might be present in a reha-
bilitation environment and might benefit from a combi-
nation of a DGO with VR environments.

Third, we had to use a larger screen for display of the 
VR environment for the nondisabled subjects than for the 
patients with neurological disorders, because the back-
projection screen was installed in front of the Lokomat at 
Balgrist University Hospital, where we conducted 
recordings with nondisabled subjects. The larger screen 
size potentially elicited stronger responses in nondisabled 
subjects compared with patients with neurological disor-
ders, who saw the VR environment on a 42-inch screen. 
This lower experience of immersion could explain the 

fewer significantly different results in physiological 
recordings of patients with neurological disorders com-
pared with nondisabled subjects.

CONCLUSIONS

The key result of our study is that real-time objective 
assessment of mental engagement is possible using psy-
chophysiological measurements. For the first time, this 
assessment of engagement can be performed in patients 
with neurological disorders during gait training. The next 
step will be implementation of real-time control of the 
psychophysiological state of a patient during rehabilita-
tion training by adjusting the stimulus of the task being 
performed. Future work includes investigating modifica-
tion of algorithms. Neural networks are nonadaptive after 
training them. We will implement other classifiers such 
as Bayesian networks, reinforcement learning, or fuzzy-
C-mean clustering, which have already been used in 
automatic classification of emotional states.

A major contribution to the day-to-day clinical appli-
cability of our approach will come from the use of Kal-
man filters for subject-specific adaptation of classifier 
parameters. These methods are currently under develop-
ment and will be tested in the near future.

Closed-loop control of mental engagement has the 
potential to improve robot-assisted rehabilitation in the 
future. Methods of implementing robot-assisted rehabili-
tation to overcome challenges of the clinical environment 
and to provide engaging patient-specific therapies are in 
an early stage of evolution. Particularly in the field of 
gait rehabilitation, the effectiveness of robot-assisted 
intervention is not yet fully realized. The Lokomat gait 
orthosis provides the advantage of reducing the burden 
on clinical staff during weight-supported gait training 
and has been found by some researchers to have advan-
tages over conventional therapies [50–51]. By addressing 
important psychological aspects of mental engagement in 
technology-assisted therapies, innovations may be made 
that help bridge the gap found by some researchers with 
conventional therapies [52–53]. Our approach might help 
to improve some of the features of technology-assisted 
rehabilitation—taking a step toward meeting more of the 
needs of the patient and therapist.
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